
XQuery

Chapter 9

XQuery

Peter Wood (BBK) XML Data Management 244 / 378

XQuery

Motivation

Now that we have XPath, what do we need XQuery for?
XPath was designed for addressing parts of existing XML
documents
XPath cannot

I create new XML nodes
I perform joins between parts of a document (or many documents)
I re-order the output it produces
I . . .

Furthermore, XPath
I has a very simple type system
I can be hard to read and understand (due to its conciseness)

Peter Wood (BBK) XML Data Management 245 / 378

XQuery

Data Model

XQuery closely follows the XML Schema data model
The most general data type is an item
An item is either a (single) node or an atomic value

Peter Wood (BBK) XML Data Management 246 / 378

XQuery

Data Model (2)

XQuery works on sequences, which are series of items
In XQuery every value is a sequence

I There is no distinction between a single item and a sequence of
length one

Sequences can only contain items; they cannot contain other
sequences

Peter Wood (BBK) XML Data Management 247 / 378

XQuery

Document Representation

Every document is represented as a tree of nodes
Every node has a unique node identity that distinguishes it from
other nodes (independent of any ID attributes)
The first node in any document is the document node (which
contains the whole document)
The order in which the nodes occur in an XML document is called
the document order

Peter Wood (BBK) XML Data Management 248 / 378

XQuery

Document Representation (2)

Attributes are not considered children of an element
I They occur after their element and before its first child
I The relative order within the attributes of an element is

implementation-dependent

Peter Wood (BBK) XML Data Management 249 / 378

XQuery

Query Language

We are now going to look at the query language itself
I Basics
I Creating nodes/documents
I FLWOR expressions
I Advanced topics

Peter Wood (BBK) XML Data Management 250 / 378

XQuery

Comments

XQuery uses “smileys” to begin and end comments:
(: This is a comment :)

These are comments found in a query (to comment the query)
I Not to be confused with comments in XML documents

Peter Wood (BBK) XML Data Management 251 / 378

XQuery

Literals

XQuery supports numeric and string literals
There are three kinds of numeric literals

I Integers (e.g. 3)
I Decimals (e.g. -1.23)
I Doubles (e.g. 1.2e5)

String literals are delimited by quotation marks or apostrophes
I “a string”
I ’a string’
I ’This is a “string”’

Peter Wood (BBK) XML Data Management 252 / 378

XQuery

Input Functions

XQuery uses input functions to identify the data to be queried
There are two different input functions, each taking a single
argument

I doc()

F Returns an entire document (i.e. the document node)
F Document is identified by a Universal Resource Identifier (URI)

I collection()

F Returns any sequence of nodes that is associated with a URI
F How the sequence is identified is implementation-dependant
F For example, eXist allows a database administrator to define

collections, each containing a number of documents

Peter Wood (BBK) XML Data Management 253 / 378

XQuery

Sample Data

In order to illustrate XQuery queries, we use a sample data file
books.xml which is based on bibliography data

<bib>

<book year='1994'>

<title>TCP/IP Illustrated</title>

<author>

<last>Stevens</last>

<first>W.</first>

</author>

<publisher>Addison Wesley</publisher>

<price>65.95</price>

</book>

Peter Wood (BBK) XML Data Management 254 / 378

XQuery

Sample Data (cont’d)

<book year='1992'>

<title>

Advanced Programming in the UNIX environment

</title>

<author>

<last>Stevens</last>

<first>W.</first>

</author>

<publisher>Addison Wesley</publisher>

<price>65.95</price>

</book>

Peter Wood (BBK) XML Data Management 255 / 378

XQuery

Sample Data (cont’d)

<book year='2000'>

<title>Data on the Web</title>

<author>

<last>Abiteboul</last> <first>Serge</first>

</author>

<author>

<last>Buneman</last> <first>Peter</first>

</author>

<author>

<last>Suciu</last> <first>Dan</first>

</author>

<publisher>Morgan Kaufmann</publisher>

<price>39.95</price>

</book>

Peter Wood (BBK) XML Data Management 256 / 378

XQuery

Sample Data (cont’d)

<book year='1999'>

<title>

The Economics of Technology and Content for Digital TV

</title>

<editor>

<last>Gerbarg</last>

<first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic</publisher>

<price>129.95</price>

</book>

</bib>

Peter Wood (BBK) XML Data Management 257 / 378

XQuery

Input Functions (2)

doc("books.xml") returns the entire document
A run-time error is raised if the doc function is unable to locate the
document

Peter Wood (BBK) XML Data Management 258 / 378

XQuery

Input Functions (3)

XQuery uses XPath to locate nodes in XML data
An XPath expression can be appended to a doc (or collection)
function to select specific nodes
For example, doc("books.xml")//book
returns all book nodes of books.xml

Peter Wood (BBK) XML Data Management 259 / 378

XQuery

Creating Nodes

So far, XQuery does not look much more powerful than XPath
We only located nodes in XML documents
Now we take a look at how to create nodes
Note that this creates nodes in the output of a query; it does not
update the document being queried

Peter Wood (BBK) XML Data Management 260 / 378

XQuery

Creating Nodes (2)

Elements, attributes, text nodes, processing instructions, and
comment nodes can all be created using the same syntax as XML
The following element constructor creates a book element:
<book year='1977'>

<title>Harold and the Purple Crayon</title>
<author>

<last>Johnson</last>
<first>Crockett</first>

</author>
<publisher>

Harper Collins Juvenile Books
</publisher>
<price>14.95</price>

</book>

Peter Wood (BBK) XML Data Management 261 / 378

XQuery

Creating Nodes (3)

Document nodes do not have an explicit syntax in XML
XQuery provides a special document node constructor
The query
document {}

creates an empty document node

Peter Wood (BBK) XML Data Management 262 / 378

XQuery

Creating Nodes (4)

Document node constructor can be combined with other
constructors to create entire documents
document {

<?xml-stylesheet type='text/xsl' href='trans.xslt'?>
<!-- I love this book -->
<book year='1977'>

<title>Harold and the Purple Crayon</title>
<author>

<last>Johnson</last>
<first>Crockett</first>

</author>
<publisher>

Harper Collins Juvenile Books
</publisher>
<price>14.95</price>

</book>
}

Peter Wood (BBK) XML Data Management 263 / 378

XQuery

Creating Nodes (5)

Constructors can be combined with other XQuery expressions to
generate content dynamically
In element constructors, curly braces { } delimit enclosed
expressions which are evaluated to create content
Enclosed expressions may occur in the content of an element or
the value of an attribute

Peter Wood (BBK) XML Data Management 264 / 378

XQuery

Creating Nodes (6)

This query creates a list of book titles from books.xml

<titles count =
'{ count(doc("books.xml")//title) }'>
{
doc("books.xml")//title

}
</titles>

The result is:
<titles count="4">

<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>Data on the Web</title>
<title>The Economics of ...</title>

</titles>

Peter Wood (BBK) XML Data Management 265 / 378

XQuery

Whitespace

Implementations may discard boundary whitespace (whitespace
between tags with no intervening non-whitespace)
This whitespace can be preserved by an xmlspace declaration in
the prolog of a query
The prolog of a query is an optional section setting up the
compile-time context for the rest of the query

Peter Wood (BBK) XML Data Management 266 / 378

XQuery

Whitespace (2)

The following query declares that all whitespace in element
constructors must be preserved (which will output the element in
exactly the same format)

declare xmlspace preserve;

<author>

<last>Stevens</last>

<first>W.</first>

</author>

Omitting this declaration (or setting the mode to strip) will give:
<author><last>Stevens</last><first>W.</first></author>

Peter Wood (BBK) XML Data Management 267 / 378

XQuery

Combining and Restructuring

The expressiveness of XQuery goes beyond just creating nodes
Information from one or more sources can be combined and
restructured to create new results
We are going to have a look at the most important expressions
and functions

Peter Wood (BBK) XML Data Management 268 / 378

XQuery

FLWOR

FLWOR expressions (pronounced “flower”) are one of the most
powerful and common expressions in XQuery
Syntactically, they show similarity to the select-from-where
statements in SQL
However, FLWOR expressions do not operate on tables, rows, and
columns

Peter Wood (BBK) XML Data Management 269 / 378

XQuery

FLWOR (2)

The name FLWOR is an acronym standing for the first letter of the
clauses that may appear

I For
I Let
I Where
I Order by
I Return

Peter Wood (BBK) XML Data Management 270 / 378

XQuery

FLWOR (3)

The acronym FLWOR roughly follows the order in which the
clauses occur
A FLWOR expression

I starts with one or more for or let clauses (in any order)
I followed by an optional where clause,
I an optional order by clause,
I and a required return clause

Peter Wood (BBK) XML Data Management 271 / 378

XQuery

For and Let Clauses

Every clause in a FLWOR expression is defined in terms of tuples
The for and let clauses create these tuples
Therefore, every FLWOR expression must have at least one for

or let clause
We will start with artificial-looking queries to illustrate the inner
workings of for and let clauses

Peter Wood (BBK) XML Data Management 272 / 378

XQuery

For and Let Clauses (2)

The following query creates an element named tuple in its return
clause

for $i in (1, 2, 3)

return

<tuple><i> { $i } </i></tuple>

We bind the variable $i to the expression (1, 2, 3), which
constructs a sequence of integers
The above query results in:

<tuple><i>1</i></tuple>

<tuple><i>2</i></tuple>

<tuple><i>3</i></tuple>

(a for clause preserves order when it creates tuples)

Peter Wood (BBK) XML Data Management 273 / 378

XQuery

For and Let Clauses (3)

A let clause binds a variable to the entire result of an expression
If there are no for clauses, then a single tuple is created

let $i := (1, 2, 3)

return

<tuple><i> { $i } </i></tuple>

results in:

<tuple><i>1 2 3</i></tuple>

Peter Wood (BBK) XML Data Management 274 / 378

XQuery

For and Let Clauses (4)

Variable bindings of let clauses are added to the tuples
generated by for clauses

for $i in (1, 2, 3)

let $j := ('a', 'b', 'c')

return

<tuple><i>{ $i }</i><j>{ $j }</j></tuple>

results in:

<tuple><i>1</i><j>abc</j></tuple>

<tuple><i>2</i><j>abc</j></tuple>

<tuple><i>3</i><j>abc</j></tuple>

Peter Wood (BBK) XML Data Management 275 / 378

XQuery

For and Let Clauses (5)

for and let clauses can be bound to any XQuery expression
Let us do a more realistic example
List the title of each book in books.xml together with the numbers
of authors:

for $b in doc("books.xml")//book

let $a := $b/author

return

<book> { $b/title,

<count> { count($a) } </count> }

</book>

Peter Wood (BBK) XML Data Management 276 / 378

XQuery

For and Let Clauses (6)

This results in:
<book>

<title>TCP/IP Illustrated</title>
<count>1</count>

</book>
<book>

<title>Advanced Programming ...</title>
<count>1</count>

</book>
<book>

<title>Data on the Web</title>
<count>3</count>

</book>
<book>

<title>The Economics of Technology ...</title>
<count>0</count>

</book>

Peter Wood (BBK) XML Data Management 277 / 378

XQuery

Where Clauses

A where clause eliminates tuples that do not satisfy a particular
condition
A return clause is only evaluated for tuples that “survive” the
where clause
The following query returns only books whose prices are less than
50.00:

for $b in doc("books.xml")//book

where $b/price < 50.00

return $b/title

returns

<title>Data on the Web</title>

Peter Wood (BBK) XML Data Management 278 / 378

XQuery

Order By Clauses

An order by clause sorts the tuples before the return clause is
evaluated
If there is no order by clause, then the results are returned in
document order
The following example lists the titles of books in alphabetical
order:

for $t in doc("books.xml")//title

order by $t

return $t

An order spec may also specify whether to sort in ascending or
descending order (using ascending or descending)

Peter Wood (BBK) XML Data Management 279 / 378

XQuery

Return Clauses

Any XQuery expression may occur in a return clause
Element constructors are very common in return clauses
The following query represents an author’s name as a string in a
single element
for $a in doc("books.xml")//author
return

<author> { string($a/first), " ",
string($a/last) } </author>

results in

<author>W. Stevens</author>
<author>W. Stevens</author>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>

Peter Wood (BBK) XML Data Management 280 / 378

XQuery

Return Clauses (2)

The following query adds another level to the hierarchy:

for $a in doc("books.xml")//author

return

<author>

<name> { $a/first, $a/last } </name>

</author>

results in

<author>

<name>

<first>W.</first>

<last>Stevens</last>

</name>

</author>

...

Peter Wood (BBK) XML Data Management 281 / 378

XQuery

Operators

The operators shown in the queries so far have not been covered
yet
XQuery has three different kinds of operators

I Arithmetic operators
I Comparison operators
I Sequence operators

Peter Wood (BBK) XML Data Management 282 / 378

XQuery

Arithmetic Operators

XQuery supports the arithmetic operators +, -, *, div, idiv, and
mod

The idiv and mod operators require integer arguments, returning
the quotient and the remainder, respectively
If an operand is a node, atomization is applied (casting the content
to an atomic type)
If an operand is an empty sequence, the result is an empty
sequence
If an operand is untyped, it is cast to a double (raising an error if
the cast fails)

Peter Wood (BBK) XML Data Management 283 / 378

XQuery

Comparison Operators

XQuery has different sets of comparison operators: value
comparisons, general comparisons, node comparisons, and order
comparisons
Value comparison operators compare atomic values:

eq equals
ne not equals
lt less than
le less than or equal to
gt greater than
ge greater than or equal to

Peter Wood (BBK) XML Data Management 284 / 378

XQuery

General Comparisons

The following query raises an error

for $b in doc("books.xml")//book

where $b/author/last eq 'Stevens'

return $b/title

because we try to compare several author names to 'Stevens'

(books may have more than one author)
We need a general comparison operator for this to work
A general comparison returns true if any value in a sequence of
atomic values matches

Peter Wood (BBK) XML Data Management 285 / 378

XQuery

General Comparisons (2)

The following table shows the corresponding general comparison
operator for each value comparison operator

value comparison general comparison
eq =
ne !=
lt <
le <=
gt >
ge >=

Peter Wood (BBK) XML Data Management 286 / 378

XQuery

Built-in Functions

XQuery also offers a set of built-in functions and operators
We focus only on the most common ones here
SQL users will be familiar with the min(), max(), count(), sum(),
and avg() functions
Other familiar functions include

I Numeric functions like round(), floor(), and ceiling()
I String functions like concat(), string-length(), substring(),

upper-case(), lower-case()
I Cast functions for the various atomic types

Peter Wood (BBK) XML Data Management 287 / 378

XQuery

User-Defined Functions
When a query becomes large and complex, it becomes easier to
understand if it is split up into functions
For example, if the titles of books written by a given author are
needed in different places of a query, a function could be defined
(in the prolog):

define function books-by-author($last, $first)

as element()*

{

for $b in doc("books.xml")//book

for $a in $b/author

where $a/first = $first

and $a/last = $last

return $b/title

}

Peter Wood (BBK) XML Data Management 288 / 378

XQuery

Library Modules

Functions can be put into library modules, which can be imported
by any query
Every module in XQuery is either a main module (which contains
a query body) or a library module (which has no query body)
A library module begins with a module declaration which provides
a URI for identification:

module "http://example.com/xq/book"

define function ...

define function ...

Peter Wood (BBK) XML Data Management 289 / 378

XQuery

Library Modules (2)

Any module can import another module using a import module

declaration
This declaration has to specify a URI and may specify a location
where the module can be found

import module "http://example.com/xq/book"

at "file:///home/xquery/..."

Peter Wood (BBK) XML Data Management 290 / 378

XQuery

Positional Variables

The for clause supports positional variables
This identifies the position of a given item in the sequence
generated by an expression
The following query returns the titles of books with an attribute
that numbers the books:

for $t at $i in doc("books.xml")//title

return

<title pos=' { $i } '>

{ string($t) }

</title>

Peter Wood (BBK) XML Data Management 291 / 378

XQuery

Positional Variables (2)

The output of this query looks like this:

<title pos="1">

TCP/IP Illustrated

</title>

<title pos="2">

Advanced Programming in ...

</title>

<title pos="3">

Data on the Web

</title>

<title pos="4">

The Economics of Technology ...

</title>

Peter Wood (BBK) XML Data Management 292 / 378

XQuery

Eliminating Duplicates

Data (or intermediate query results) often contain duplicate values
The following query returns one of the authors twice

doc("books.xml")//author/last

which outputs

<last>Stevens</last>

<last>Stevens</last>

<last>Abiteboul</last>

<last>Buneman</last>

<last>Suciu</last>

Peter Wood (BBK) XML Data Management 293 / 378

XQuery

Eliminating Duplicates (2)

The distinct-values() function is used to remove duplicate
values
It extracts values of a sequence of nodes and creates a sequence
of unique values
Example:

distinct-values(doc("books.xml")//author/last)

which outputs

Stevens Abiteboul Buneman Suciu

Peter Wood (BBK) XML Data Management 294 / 378

XQuery

Combining Data Sources

A query may bind multiple variables in a for clause to combine
data from different expressions
Suppose we have a file named reviews.xml that contains book
reviews:

<reviews>

<entry>

<title>Data on the Web</title>

<price>34.95</price>

<review>

A very good discussion of

semi-structured database ...

</review>

</entry>

...

Peter Wood (BBK) XML Data Management 295 / 378

XQuery

Combining Data Sources (2)

A FLWOR expression can bind one variable to the bibliography
data and another to the review data
In the following query we join data from the two files:

for $t in doc("books.xml")//title,

$e in doc("reviews.xml")//entry

where $t = $e/title

return

<review>

{ $t, $e/review }

</review>

Peter Wood (BBK) XML Data Management 296 / 378

XQuery

Combining Data Sources (3)

This returns the following answer:
<review>

<title>TCP/IP Illustrated</title>
<review>

One of the best books on TCP/IP.
</review>

</review>
<review>

<title>Advanced Programming in the ...</title>
<review>

A clear and detailed discussion of ...
</review>

</review>
...

Peter Wood (BBK) XML Data Management 297 / 378

XQuery

Inverting Hierarchies

XQuery can be used to do general transformations
In the example file, books are sorted by title
If we want to group books by publisher, we have to “pull up” the
publisher element (i.e., invert the hierarchy of the document)
The next slide shows a query to do this

Peter Wood (BBK) XML Data Management 298 / 378

XQuery

Inverting Hierarchies (2)

<listings> {

for $p in

distinct-values(doc("books.xml")//publisher)

order by $p

return

<result>

{ $p }

{ for $b in doc("books.xml")//book

where $b/publisher = $p

order by $b/title

return $b/title

}

</result>

}

</listings>

Peter Wood (BBK) XML Data Management 299 / 378

XQuery

Inverting Hierarchies (3)

Result:

<listings>

<result>Addison-Wesley

<title>Advanced Programming ...</title>

<title>TCP/IP Illustrated</title>

</result>

<result>Kluwer Academic Publishers

<title>The Economics of ...</title>

</result>

<result>Morgan Kaufmann Publishers

<title>Data on the Web</title>

</result>

</listings>

Peter Wood (BBK) XML Data Management 300 / 378

XQuery

Quantifiers

Some queries need to determine whether
I at least one item in a sequence satisfies a condition
I every item in sequence satisfies a condition

This is done using quantifiers:
I some is an existential quantifier
I every is a universal quantifier

Peter Wood (BBK) XML Data Management 301 / 378

XQuery

Quantifiers (2)

The following query shows an existential quantifier
We are looking for a book where at least one of the authors has
the last name ‘Buneman’:

for $b in doc("books.xml")//book

where some $a in $b/author

satisfies ($a/last = 'Buneman')

return $b/title

which returns:

<title>Data on the Web</title>

Peter Wood (BBK) XML Data Management 302 / 378

XQuery

Quantifiers (3)

The following query shows a universal quantifier
We are looking for a book where all of the authors have the last
name ‘Stevens’:

for $b in doc("books.xml")//book

where every $a in $b/author

satisfies ($a/last = 'Stevens')

return $b/title

which returns:

<title>TCP/IP Illustrated</title>

<title>Advanced Programming ...</title>

<title>The Economics of Technology ...</title>

Peter Wood (BBK) XML Data Management 303 / 378

XQuery

Quantifiers (4)

A universal quantifier applied to an empty sequence always yields
true (there is no item violating the condition)
An existential quantifier applied to an empty sequence always
yields false (there is no item satisfying the condition)

Peter Wood (BBK) XML Data Management 304 / 378

XQuery

Conditional Expressions

XQuery’s conditional expressions (if - then - else) are used in
the same way as in other languages
In XQuery, both the then and the else clause are required
The empty sequence () can be used to specify that a clause
should return nothing
The following query returns all authors for books with up to two
authors and “et al.” for any remaining authors

Peter Wood (BBK) XML Data Management 305 / 378

XQuery

Conditional Expressions (2)

for $b in doc("books.xml")//book

return

<book> { $b/title } {

for $a at $i in $b/author

where $i <= 2

return <author> { string($a/last), ", ",

string($a/first) }

</author>

}

{ if (count($b/author) > 2)

then <author> et al. </author>

else ()

}

</book>

Peter Wood (BBK) XML Data Management 306 / 378

XQuery

Conditional Expressions (3)
Result:

<book>
<title>TCP/IP Illustrated</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Advanced Programming in ...</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Data on the Web</title>
<author>Abiteboul, Serge</author>
<author>Buneman, Peter</author>
<author>et al. </author>

</book>
<book>

<title>The Economics of Technology ...</title>
</book>

Peter Wood (BBK) XML Data Management 307 / 378

XQuery

Summary

XQuery was designed to be compact and compositional
It is well-suited to XML-processing tasks like data integration and
data transformation

Peter Wood (BBK) XML Data Management 308 / 378

